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A method is proposed to determine the thermophysical characteristics of solid materials on
the basis of solving third- and fourth-order linear heat-conduction equations, It is shown
that linear heat-conduction equations of order greater than two possess a high degree of ac-
curacy of the solution,

The majority of methods to determine the temperature dependence of the thermophysical character-
istics of solid materials is based on the solution of linear heat-conduction equations in which these char-
acteristics are assumed constant. This evidently introduces definite errors which it is not possible to
avoid,

Methods are known, [1,2], for example, which are based on the solution of nonlinear heat-conduc-
tion equations, However, their practical use is fraught with definite difficulties, since functional depen-
dences of the desired quantities enter in the computational formulas.

A method which is distinguished from those preceding by the higher degree of accuracy in deter-
mining the thermophysical parameters and by the convenience of practical application is proposed in this

paper,

The crux of the method is the following: We represent the nonlinear equation of heat conduction
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Since the functions ¢¢) and y{) are continuous and have continuous first to n-th derivatives with re-
spect to x inclusive, then the right side of (2) can be represented as the sum of a power series:
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where &, 1) = (8/0x)[p(t)(@t/8x)] — ) (6t/07) and x; is an arbitrary point of the domain of variation of the
space coordinate x, After n-tuple differentiation of (3) with respect to x, we obtain a linear differential
equation of heat conduction of (n + 2)-th order:
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N To solve (4) it is necessary to have n + 2 boundary con-
‘\\\ ditions, which can be given on both the boundary surfaces of the
&0 NN body and at points within it. Hence, it can be concluded for

n > 1 that the temperature field described by (4) practically
agrees with the solution of (1). However, although {4) is linear,

2000 \
\\ , its solution for n » 1 is also difficult. In this connection, it is
\\2 :

1500 g expedient to find 2 minimal value of n such that the solution of
4 (4) would agree with the exact solution of the nonlinear equa-
N N tion of heat conduction to a sufficiently high degree of accuracy.
1000 \\ The simplest means of determining npyiy is to compare the so-
NN lution of (4) for different values of n with the exact solution of
500 \\\\ (1}, Inthis case, let us limit ourselves to solutions of just the

stationary equations of heat conduction.

\ : Let the nonlinear stationary heat-conduction equation
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fields: 1) according to (8); 2) ac- X .
cording to (9); 3) according to (10); with the boundary conditions
4) according to (11); tis in°C; R b ltmo = bo» (6)
is in mm. 4 li=r = 0. (7)
be given. Then the solutions of (5) and @) are for n = 0, 1, 2, respectively;
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where t;(1/2 R), t;(1/3R), and £,(2/3 R) are additional boundary conditions taken from the solution of (8).
Graphs of the functions of the temperature fields corresponding to the solutions (8)-(11) are represented in
the figure for A = 0.2 W/(m-deg), 4, = 0,002 W/ (m - deg)?, £y =3000°C, and R = 0.012 m. It follows from
an analysis of the curves that the solution (10) and even more so (11) assure an accuracy perfectly ade~
quate for practice. Taking into account the temperature drops at 3000°C in solving (4) and (5), an analo-
gous conclusion can be made relative to the solution of nonstationary heat-conduction equations of corre-
sponding orders. Therefore, linear equations of the third or fourth order, whose solution will not raise
any difficulties, can be used in developing some method to determine the thermophysical parameters of
solid materials with an insignificant loss of accuracy. Thus, for example, in the case of symmetric
heating of a plate of thickness 2R and of given boundary conditions
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the solution of @) for n = 1 will be
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if it is a question of just the first-order derivatives of the functions ¢(r) and y(r). In (16) a,is the coeffi-
cient of thermal diffusivity corresponding to the temperature t; and assumed known, It follows from an
analysis of the nonlinear heat-conduction equation (1) as x — 0 that
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Taking account of the above and the solution (16), we obtain the following formula to determine the
coefficient of thermal diffusivity:
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A formula can also be obtained in an analogous manner from the solution of a fourth~order linear heat-con-
duction equation. Thus, if the boundary condition
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is added to the system of equations (12)-(15), where 0 < R; <R, then the desired formula will be
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It is not difficult to determine the heat-conduction coefficient if the heat flux on at least one of the boundary
surfaces of the body being tested is given. In principle, (17) and (18) differ from the well-known formula
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Firstly, (19) has been obtained from the solution of a second-order linear equation of heat conduction and
admits of its application for temperature drops on the order of 10-15°C between the boundary surfaces.
Secondly, when it is used, the question remains open as to what temperature the values obtained refer @t
the center, onthe surface, or inthe middle), As regards (17) and (18), they have been obtained from the
solution of third- and fourth-order linear heat-conduction equations, respectively; therefore, their ac-
curacy will be greater, Moreover, they are without that uncertainty which was expressed relative to (19),
since the thermal diffusivity is-determined at the point x = 0 according to (17) or (18). Finally, they do
not limit the temperature drop between the boundary surfaces.
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